V = 2146.4 (2) Å³

Mo $K\alpha$ radiation $\mu = 1.06 \text{ mm}^-$

 $0.20 \times 0.18 \times 0.15~\mathrm{mm}$

12499 measured reflections

4859 independent reflections

4109 reflections with $I > 2\sigma(I)$

Z = 4

T = 298 K

 $R_{\rm int} = 0.024$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Chlorido(2-iminomethyl-3-fluorophenyl- $\kappa^2 C^1$, N) tris(trimethylphosphane- κP) iron

Xiaofeng Xu and Xiaoyan Li*

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China Correspondence e-mail: Xli63@sdu.edu.cn

Received 18 March 2011; accepted 21 April 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.071; data-to-parameter ratio = 22.4.

The title compound, $[Fe(C_7H_5FN)Cl(C_3H_9P)_3]$, was obtained as a product of the reaction of $[Fe(Me_3P)_4]$ with a molar equivalent of (2-chloro-6-fluorophenyl)methanimine in diethyl ether. This compound is sensitive to air, and rapidly decomposes when exposed to air for a few minutes. The Fe atom has an octahedral coordination geometry in which the bidentate fluorophenyl methanimine ligand forms the equatorial plane with the Cl atom and one of the trimethylphosphane ligands. The other two trimethylphosphane ligands are located in the axial positions. In the crystal, an N-H···Cl hydrogen bond occurs.

Related literature

For related literature regarding C-Cl bond activation, see: Wang et al. (2007); Wang & Love (2008); Shi et al. (2009). Related crystal structures of iron compounds have not yet been reported in the literature. For substituted phenylmethanimine coordinated dihydride complexes of osmium, see: Schloerer et al. (2006); Barea et al. (1998).

Experimental

Crystal data

$Fe(C_7H_5FN)Cl(C_3H_9P)_3$]	
$M_r = 441.64$	
Monoclinic, $P2_1/c$	
a = 8.9879 (6) Å	
b = 19.4457 (13) Å	
c = 13.5438 (7) Å	
$\beta = 114.937 \ (3)^{\circ}$	

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.816, \ T_{\max} = 0.858$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	217 parameters
$wR(F^2) = 0.071$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
4859 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdots A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $N1\!-\!H1\!\cdots\!Cl1^i$ 0.86 2.53 3.3339 (15) 157

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge support by the NSF China, grant Nos. 20872080/20772072, and the Science Foundation of Shandong Province, grant Nos. Y2007B06/ Y2006B18.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2239).

References

Barea, G., Esteruelas, M. A., Lledos, A., Lopez, A., Onate, E. & Tolosa, J. I. (1998). Organometallics, 17, 4065-4076.

Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Schloerer, N., Pons, V., Gusev, D. G. & Heinekey, D. M. (2006). Organometallics, 25, 3481-3485.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shi, Y., Li, M., Hu, Q., Li, X. & Sun, H. (2009). Organometallics, 28, 2206–2210.

- Wang, T., Alfonso, B. J. & Love, J. A. (2007). Org. Lett. 9, 5629-5631.
- Wang, T. & Love, J. A. (2008). Organometallics, 27, 3290-3296.

Acta Cryst. (2011). E67, m679 [doi:10.1107/S1600536811015030]

Chlorido(2-iminomethyl-3-fluorophenyl- $\kappa^2 C^1$, N)tris(trimethylphosphane- κP)iron

X. Xu and X. Li

Comment

C-Cl bond activation and C-C coupling reactions are of great interest, with much focus on ortho-substitued imines (Wang *et al.*, 2007; Wang & Love, 2008), where Pt complexes have been used to catalyze the cross coupling of imines and dimethylzinc reagents through C-X bond activation. We have previously shown that the iron complexes supported by trimethylphosphine can easily activate the C-X (X=Cl,F) bond (Shi *et al.*, 2009).

Reaction of the low valent complex of Fe(PMe₃)₄ with (2-chloro-6-fluorophenyl)methanimine afforded the title compound. The *ortho* C—Cl bond was selectively activated due to its energy being lower than the C—F bond. The coordination of the imine group and one of the C atoms led to the formation of a five membered chelate ring which can provide enough energy to actiatve the C—Cl bond. It indicates that with the assistance of the imine group iron(0) complexes can easily activate the C—Cl bond affording iron(II) chloride complexes. Subsequently, C—C coupling reactions with organometallic reagents may occur.

In the title molecule (Fig. 1) the iron atom lies in an octahedral geometry in which atoms C1, N1, Cl1 and P2 form the basal plane with P1 and P3 in the axial positions. The two axial groups are located in a distorted linear geometry. A five-membered chelate ring is formed by C1, C6, C7, N1 and Fe. The bite angle of N1—Fe—C1 is 81.08 (7)°. The sum of internal bond angles (360.0°) of N1—Fe—C1, C1—Fe—P2, P2—Fe—Cl1 and Cl1—Fe—N1 indicates nearly perfect planarity. The N—H…Cl interaction is rather short (2.53 Å). The probable reason is the steric effect of atom P2 which forces the Cl1 atom closer to the H1 atom. The C1—Fe—Cl1 angle is 167.34 (5)°, while the N1—Fe—Cl1 angle (86.27 (4)°) is less than 90°. Related structures of Os complexes containing the same iminomethyl ligand have been reported in the literature (Barea *et al.*, 1998; Schloerer *et al.*, 2006), although one molecule of hydrogen occupies the position *trans* to the nitrogen atom instead of one of the trimethylphosphine ligands. In this structure the N—Os—Cl angle is also less than 90°, and also contains a similar short N—H…Cl interaction.

Experimental

A sample of Fe(PMe₃)₄ (0.50 g, 1.39 mmol) in 30 ml of diethyl ether was combined with a solution of (2-chloro-6-fluorophenyl)methanimine (0.22 g, 1.39 mmol) in diethyl ether (20 ml) at -80 °. The reaction mixture was warmed to ambient temperature and stirred for 24 h to form a red solution. The volatiles were removed *in vacuo*, and the resulting solid was extracted with pentane (40 ml). Crystallization at -15 ° afforded red crystals suitable for X-ray diffraction analysis (yield 0.40 g, 65%), dec. > 86 °.

Refinement

All H atoms on C were placed in calculated positions with a C—H bond distance of 0.93 or 0.96 Å and $U_{iso}(H) = 1.2U_{eq}$ of the carrier atom.

Figures

Fig. 1. A view of the structure of (I), showing the atomic numbering scheme and 30% probability displacement ellipsoids.

Chlorido(2-iminomethyl-3-fluorophenyl- $\kappa^2 C^1$, N)tris(trimethylphosphane- κP)iron

Crystal data
[Fe(C ₇ H ₅ FN)Cl(C ₃ H ₉ P) ₃]
$M_r = 441.64$
Monoclinic, $P2_1/c$
Hall symbol: -P2ybc
<i>a</i> = 8.9879 (6) Å

b = 19.4457 (13) Å

c = 13.5438 (7) Å

 $\beta = 114.937 (3)^{\circ}$

 $V = 2146.4 (2) \text{ Å}^3$

Z = 4

F(000) = 928 $D_x = 1.367 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5013 reflections $\theta = 2.5-27.5^{\circ}$ $\mu = 1.06 \text{ mm}^{-1}$ T = 298 KBlock, red $0.20 \times 0.18 \times 0.15 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer	4859 independent reflections
Radiation source: fine-focus sealed tube	4109 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.024$
ϕ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -10 \rightarrow 11$
$T_{\min} = 0.816, \ T_{\max} = 0.858$	$k = -24 \rightarrow 25$
12499 measured reflections	$l = -17 \rightarrow 13$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.029$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.071$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_0^2) + (0.0334P)^2 + 0.4204P]$

	where $P = (F_0^2 + 2F_c^2)/3$
4859 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
217 parameters	$\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Fe	0.02988 (3)	0.391645 (11)	0.325636 (18)	0.01883 (7)
P3	0.25510 (6)	0.35114 (2)	0.46464 (4)	0.02733 (11)
P2	0.14694 (5)	0.39138 (2)	0.20985 (4)	0.02377 (11)
P1	-0.19959 (5)	0.44130 (2)	0.20154 (4)	0.02855 (11)
C1	-0.0641 (2)	0.29926 (8)	0.29408 (13)	0.0239 (3)
C6	-0.1656 (2)	0.28469 (9)	0.34912 (13)	0.0249 (4)
C5	-0.2479 (2)	0.22233 (10)	0.33495 (15)	0.0311 (4)
C4	-0.2322 (2)	0.17074 (10)	0.27239 (15)	0.0377 (5)
H4	-0.2877	0.1293	0.2647	0.045*
C3	-0.1304 (3)	0.18198 (9)	0.22048 (15)	0.0372 (5)
H3	-0.1154	0.1472	0.1784	0.045*
C2	-0.0503 (2)	0.24454 (9)	0.23040 (15)	0.0319 (4)
H2	0.0153	0.2505	0.1933	0.038*
N1	-0.08235 (18)	0.39126 (7)	0.42146 (12)	0.0272 (3)
H1	-0.0735	0.4256	0.4636	0.033*
C7	-0.1695 (2)	0.33880 (9)	0.42040 (14)	0.0291 (4)
H7	-0.2296	0.3360	0.4618	0.035*
C12	0.2364 (2)	0.47338 (9)	0.19708 (15)	0.0320 (4)
H12A	0.3218	0.4860	0.2663	0.048*
H12B	0.1530	0.5082	0.1737	0.048*
H12C	0.2816	0.4690	0.1445	0.048*
C13	0.0237 (3)	0.37148 (12)	0.06515 (15)	0.0414 (5)
H13A	-0.0624	0.4048	0.0344	0.062*
H13B	-0.0233	0.3265	0.0587	0.062*
H13C	0.0925	0.3728	0.0269	0.062*
C11	0.3211 (2)	0.33487 (10)	0.22908 (17)	0.0375 (5)
H11A	0.3555	0.3428	0.1719	0.056*
H11B	0.2884	0.2877	0.2273	0.056*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H11C	0.4105	0.3445	0.2981	0.056*
C8	-0.1846 (3)	0.51567 (12)	0.1234 (2)	0.0500 (6)
H8A	-0.2926	0.5328	0.0792	0.075*
H8B	-0.1322	0.5022	0.0776	0.075*
H8C	-0.1211	0.5511	0.1725	0.075*
C10	-0.3503 (2)	0.38749 (12)	0.09655 (18)	0.0475 (6)
H10A	-0.3822	0.3504	0.1302	0.071*
H10B	-0.3030	0.3692	0.0504	0.071*
H10C	-0.4449	0.4146	0.0538	0.071*
C9	-0.3291 (3)	0.47893 (11)	0.2609 (2)	0.0479 (6)
H9A	-0.4121	0.5070	0.2075	0.072*
H9B	-0.2632	0.5067	0.3224	0.072*
H9C	-0.3803	0.4429	0.2840	0.072*
C14	0.4433 (2)	0.40139 (11)	0.50640 (17)	0.0441 (5)
H14A	0.5319	0.3771	0.5623	0.066*
H14B	0.4286	0.4451	0.5340	0.066*
H14C	0.4684	0.4084	0.4449	0.066*
C15	0.3272 (3)	0.26346 (10)	0.46240 (18)	0.0451 (5)
H15A	0.3641	0.2595	0.4057	0.068*
H15B	0.2391	0.2317	0.4491	0.068*
H15C	0.4163	0.2532	0.5313	0.068*
C16	0.2353 (3)	0.34609 (12)	0.59360 (16)	0.0458 (5)
H16A	0.3393	0.3340	0.6511	0.069*
H16B	0.1554	0.3117	0.5881	0.069*
H16C	0.2008	0.3899	0.6092	0.069*
F	-0.34624 (14)	0.21266 (6)	0.38775 (10)	0.0473 (3)
Cl1	0.11769 (5)	0.50640 (2)	0.39209 (4)	0.02803 (10)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe	0.02089 (13)	0.01713 (12)	0.02020 (13)	-0.00157 (9)	0.01036 (10)	-0.00253 (9)
P3	0.0284 (2)	0.0237 (2)	0.0260 (2)	-0.00102 (18)	0.00766 (19)	0.00456 (18)
P2	0.0242 (2)	0.0271 (2)	0.0231 (2)	-0.00228 (18)	0.01291 (18)	-0.00302 (17)
P1	0.0204 (2)	0.0289 (2)	0.0338 (3)	0.00095 (18)	0.00892 (19)	0.00162 (19)
C1	0.0254 (8)	0.0222 (8)	0.0227 (8)	-0.0012 (7)	0.0089 (7)	-0.0011 (7)
C6	0.0263 (9)	0.0237 (8)	0.0238 (8)	-0.0022 (7)	0.0096 (7)	0.0012 (7)
C5	0.0281 (9)	0.0313 (10)	0.0288 (9)	-0.0073 (8)	0.0069 (8)	0.0074 (8)
C4	0.0423 (11)	0.0239 (9)	0.0336 (10)	-0.0110 (8)	0.0031 (9)	0.0016 (8)
C3	0.0509 (12)	0.0219 (9)	0.0315 (10)	-0.0031 (8)	0.0103 (9)	-0.0076 (8)
C2	0.0395 (10)	0.0256 (9)	0.0329 (10)	-0.0050 (8)	0.0175 (8)	-0.0085 (8)
N1	0.0347 (8)	0.0233 (7)	0.0299 (8)	-0.0039 (6)	0.0198 (7)	-0.0072 (6)
C7	0.0325 (10)	0.0324 (10)	0.0290 (9)	-0.0031 (8)	0.0194 (8)	-0.0001 (8)
C12	0.0320 (10)	0.0350 (10)	0.0337 (10)	-0.0038 (8)	0.0184 (8)	0.0030 (8)
C13	0.0455 (12)	0.0559 (13)	0.0254 (10)	-0.0109 (10)	0.0174 (9)	-0.0086 (9)
C11	0.0375 (11)	0.0365 (11)	0.0479 (12)	0.0022 (9)	0.0273 (10)	-0.0050 (9)
C8	0.0326 (11)	0.0499 (13)	0.0586 (14)	0.0082 (10)	0.0106 (10)	0.0259 (11)
C10	0.0277 (10)	0.0572 (14)	0.0437 (13)	-0.0041 (10)	0.0015 (9)	-0.0069 (10)

С9	0.0316 (11)	0.0448 (12)	0.0696 (16)	0.0098 (9)	0.0235 (11)	-0.0042 (11)	
C14	0.0296 (10)	0.0465 (12)	0.0406 (12)	-0.0066 (9)	-0.0004 (9)	0.0105 (10)	
C15	0.0475 (12)	0.0315 (11)	0.0546 (13)	0.0139 (9)	0.0197 (11)	0.0145 (10)	
C16	0.0600 (14)	0.0450 (12)	0.0273 (10)	-0.0034 (11)	0.0135 (10)	0.0072 (9)	
F	0.0466 (7)	0.0466 (7)	0.0524 (7)	-0.0150 (6)	0.0245 (6)	0.0088 (6)	
Cl1	0.0366 (2)	0.01904 (19)	0.0327 (2)	-0.00468 (17)	0.01878 (19)	-0.00525 (17)	
Geometric parar	neters (Å, °)						
Fe—N1		1.9508 (14)	С7—Н	7	0.9300)	
Fe—C1		1.9544 (16)	C12—1	H12A	0.9600		
Fe—P2		2.2265 (5)	C12—1	H12B	0.9600	0.9600	
Fe—P3		2.2470 (5)	C12—1	H12C	0.9600)	
Fe—P1		2.2556 (5)	C13—1	H13A	0.9600)	
Fe—Cl1		2.4111 (5)	C13—1	H13B	0.9600)	
P3—C14		1.825 (2)	C13—1	H13C	0.9600)	
P3—C15		1.829 (2)	C11—1	H11A	0.9600)	
P3—C16		1.832 (2)	C11—1	H11B	0.9600)	
P2—C12		1.8268 (18)	C11—1	H11C	0.9600)	
P2—C11		1.8393 (19)	С8—Н	8A	0.9600)	
P2—C13		1.8404 (19)	С8—Н	8B	0.9600		
P1-C10		1.824 (2)	С8—Н	8C	0.9600)	
P1—C9		1.824 (2)	C10—1	H10A	0.9600)	
P1—C8		1.830 (2)	C10—1	H10B	0.9600)	
C1—C2		1.408 (2)	C10—1	H10C	0.9600)	
C1—C6		1.429 (2)	С9—Н	9A	0.9600)	
C6—C5		1.391 (2)	С9—Н	9B	0.9600)	
C6—C7		1.439 (2)	С9—Н	9C	0.9600)	
C5—C4		1.359 (3)	C14—H14A		0.9600)	
C5—F		1.364 (2)	C14—H14B		0.9600)	
C4—C3		1.386 (3)	C14—1	H14C	0.9600)	
С4—Н4		0.9300	C15—1	H15A	0.9600)	
C3—C2		1.391 (3)	C15—	H15B	0.9600)	
С3—Н3		0.9300	C15—1	HISC	0.9600)	
C2—H2		0.9300	C16—	HI6A	0.9600)	
NI—C/		1.283 (2)	C16—	HI6B	0.9600)	
NI—HI		0.8600	C16—	H16C	0.9600)	
N1—Fe—C1		81.08 (7)	C6—C	7—Н7	123.2		
N1—Fe—P2		177.39 (5)	Р2—С	12—H12A	109.5		
C1—Fe—P2		97.64 (5)	Р2—С	12—H12B	109.5		
N1—Fe—P3		88.69 (5)	H12A-		109.5		
C1—Fe—P3		90.84 (5)	Р2—С	12—H12C	109.5		
P2—Fe—P3		93.61 (2)	H12A-	-C12-H12C	109.5		
NI—Fe—Pl		86.02 (5)	H12B-	-C12-H12C	109.5		
CI—Fe—PI		93.18 (5)	P2—C	13—H13A	109.5		
P2—Fe—P1		91./94 (19)	P2—C	13—H13B	109.5		
r3—re—Pl		1/2./9(2)	H13A-	-стэ—нтэв	109.5		
NI—Fe—CII		86.27 (4)	P2—C	I3—HI3C	109.5		
CI-re-CII		167.34 (5)	H13A-	-CI3-HI3C	109.5		

P2—Fe—Cl1	95.022 (17)	H13B—C13—H13C	109.5
P3—Fe—Cl1	88.522 (18)	P2—C11—H11A	109.5
P1—Fe—Cl1	86.246 (18)	P2—C11—H11B	109.5
C14—P3—C15	102.46 (10)	H11A—C11—H11B	109.5
C14—P3—C16	100.56 (11)	P2—C11—H11C	109.5
C15—P3—C16	98.25 (10)	H11A—C11—H11C	109.5
C14—P3—Fe	117.51 (7)	H11B—C11—H11C	109.5
C15—P3—Fe	120.89 (7)	P1—C8—H8A	109.5
C16—P3—Fe	113.72 (8)	P1—C8—H8B	109.5
C12—P2—C11	98.76 (9)	H8A—C8—H8B	109.5
C12—P2—C13	100.02 (9)	P1—C8—H8C	109.5
C11—P2—C13	96.86 (10)	H8A—C8—H8C	109.5
C12—P2—Fe	114.99 (6)	H8B—C8—H8C	109.5
C11—P2—Fe	121.91 (7)	P1-C10-H10A	109.5
C13—P2—Fe	119.97 (7)	P1-C10-H10B	109.5
C10—P1—C9	99.88 (11)	H10A—C10—H10B	109.5
C10—P1—C8	102.37 (11)	P1—C10—H10C	109.5
C9—P1—C8	98.87 (11)	H10A—C10—H10C	109.5
C10—P1—Fe	118.72 (8)	H10B—C10—H10C	109.5
C9—P1—Fe	113.34 (8)	Р1—С9—Н9А	109.5
C8—P1—Fe	120.13 (7)	Р1—С9—Н9В	109.5
C2—C1—C6	114.22 (15)	Н9А—С9—Н9В	109.5
C2—C1—Fe	133.41 (14)	Р1—С9—Н9С	109.5
C6—C1—Fe	112.36 (12)	Н9А—С9—Н9С	109.5
C5—C6—C1	121.36 (16)	Н9В—С9—Н9С	109.5
C5—C6—C7	124.61 (16)	P3—C14—H14A	109.5
C1—C6—C7	114.01 (15)	P3—C14—H14B	109.5
C4—C5—F	119.09 (16)	H14A—C14—H14B	109.5
C4—C5—C6	122.71 (18)	P3—C14—H14C	109.5
F—C5—C6	118.19 (17)	H14A—C14—H14C	109.5
C5—C4—C3	117.68 (17)	H14B—C14—H14C	109.5
C5—C4—H4	121.2	P3—C15—H15A	109.5
C3—C4—H4	121.2	P3—C15—H15B	109.5
C4—C3—C2	120.94 (18)	H15A—C15—H15B	109.5
С4—С3—Н3	119.5	P3—C15—H15C	109.5
С2—С3—Н3	119.5	H15A - C15 - H15C	109.5
$C_{3} - C_{2} - C_{1}$	123 01 (18)	H15B-C15-H15C	109.5
C3—C2—H2	118.5	P3-C16-H16A	109.5
C1—C2—H2	118.5	P3-C16-H16B	109.5
C7—N1—Fe	118.71 (12)	H16A—C16—H16B	109.5
C7—N1—H1	120.6	P3—C16—H16C	109.5
Fe—N1—H1	120.6	H16A—C16—H16C	109.5
N1—C7—C6	113 67 (15)	H16B-C16-H16C	109.5
N1—C7—H7	123.2		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1···Cl1 ⁱ	0.86	2.53	3.3339 (15)	157.

Symmetry codes: (i) -x, -y+1, -z+1.

Fig. 1

